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The Korteweg-de Vries equation and water waves. 
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The method of solution of the Korteweg-de Vries equation outlined by Gardner 
et al. (1967) is exploited to solve the equation. A convergent series representation 
of the solution is obtained, and previously known aspects of the solution are 
related to this general form. Asymptotic properties of the solution, valid for 
large time, are examined. Several simple methods of obtaining approximate 
asymptotic results are considered. 

1. Introduction and main conclusions 
The 'Korteweg-de Vries (KdV) equation 

Ut + 6uux + uxXx = 0 (1) 

describes the nonlinear propagation of waves in many dispersive media where 
dissipation is absent. The ingenious work of Gardner et ab. (1967) reduces the 
problem of solving (1) to that of solving the linear integral equation of Gelfand & 
Levitan (1955), in a form due to Marchenko (cf. Agranovich & Marchenko 1963), 

where B(x+ y) depends on the initial data u(x, 0). The theory imposes two limita- 
tions on the initial data. First, to guarantee the existence of a function u(x,t) 
for which uxzx is defined almost everywhere for 0 < t < co, it is necessary that 
the initial data satisfy 

(Bona & Smith 1973). Second, to guarantee the solvability of (2) for 0 < t < co, 
u(x,  0) must be locally integrable and must satisfy 

(Faddeev 1958). The two conditions, as well as their respective purposes, are 
quite independent of each other. We shall assume that both are satisfied through- 
out the present discussion. 

Determination of the exact solution of (l), for acceptable initial data, is still 
46 F L M  59 
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a substantial task. For large time, however, the solution acquires a comparatively 
simple structure which one can approximate to any desired accuracy. Aspects of 
this asymptotic solution have been discussed by several other authors, whom 
we mention in context. 

In part I of the present paper we examine the properties of the solution of the 
Korteweg-de Vries equation that evolves from arbitrary initial data satisfying 
(3) and (4). We examine the exact solution in some detail in 3 2. In  3 3 we consider 
several approximate methods to obtain information about the asymptotic 
solution as t --f co. In  3 4 we relate the solution obtained by means of (2) to the 
solution obtained by iteration directly in the differential equation. In  part 2 
we shall compare these results with data from experiments on water waves, 
the field in which the equation was originally derived (Korteweg:& de Vries 
1895). 

Among the features of the asymptotic solution, the following appear to be 
the most important. 

(i) An arbitrary, initial disturbance evolves into a finite number of permanent 
waves, called solitons, and an oscillatory wave train, which disperses. 

(ii) Cnoidal waves, the uniform wave train solutions of (l), play no part what- 
ever in the evolution of disturbances that satisfy (4). 

(iii) The solitons. (a )  The solitons are positive (u(x ,  t )  2 0)) for (I)  as written. 
Each soliton travels with a positive speed which is proportional to its amplitude. 
Thus, the solitons are eventually ordered by amplitude. No acceptable initial 
data can produce two solitons with the same velocity. ( b )  The net effect on a 
soliton from having experienced an interaction is a phase shift. For two 
solitons, the interaction advances the faster wave and retards the slower one. 
( c )  If Irn u(x,O)dx > 0) 

- w  

at least one soliton emerges. If u(x ,  0) 6 0,  no solitons emerge. (d )  The number of 
solitons N that emerge from the initial data depends on the parameter 
(UP), where U is a typical amplitude of the initial data, and I is a typical 
length. For initial data of finite extent (such as the data of the experiments in 

if 

where I,, I,, Q,, Q2 and Q3 are shown in figure 1.  For arbitrary initial data, 

where 
u(x ,  0 )  if u(x,  0) 3 0, 

dX) = { 0 if u(x,O) < 0. 



Korteweg-de Vries equation and water waves. Part I 72 3 

u=o 

FIGURE I. Bounds for the initial data. 

A third bound has been found by Karpman & Sokolov( 1968), the validity of which 
requires that u(x,  0 )  2 0 and that N be large. ( e )  The amplitude of the solitons 
can be estimated by a Rayleigh-Ritz procedure. The largest amplitude is 2 I h I, 
where 

The amplitude does not exceed 2u0, where uo = Max {u(x,  0)). It approaches 2u, 

as the size of the initial disturbance (and the number of nascent solitons) increases. 
For a small disturbance with 

5 

- W  

(iv) The oscillatory wave train. (a )  The group velocity of the oscillatory wave 
train, or ‘tail’, is non-positive. ( b )  The tail has a dispersive character which is 
similar to that of the solution of the corresponding linear equation. Specifically, 
short waves dominate near the rear of the tail, longer waves move to the front. 
The amplitudes of individual wave crests decay as t-4, which suggests that the 
decay rate of the entire tail is algebraic. (c) The naive perturbation expansion 
of the solution of (l), in powers of its amplitude, can be made to converge to the 
solution if and only if no solitons exist. When it converges, this expansion co- 
incides (term-by-term) with that obtained by solving (2). (d )  The similarity 
solution obtained by Berezin & Karpman (1964) emanates from initial data that 
violate (4). 

(v) The general solution. An initial disturbance, in general, evolves into both 
solitons and a tail. These separate as t --f co, because of their respective speeds. 
There appears to be no permanent effect on the solitons from the interaction with 
the tail, or vice versa. The final shape, speed and phase of each soliton apparently 
are unaffected by the tail, and (for the special case of only one soliton) the 
asymptotic behaviour of the tail is unaffected by the soliton. 

46-2 
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2. The exact solution 
2.1. The method of solution 

The remarkable method of solution of (l), as outlined by Gardner et al., follows. 
(i) Solve the ordinary scattering problem, using the initial data u(x, 0 )  as the 

potential; i.e. solve the eigenvalue problem 

(9) 
d2 

ax2 
- + ( A  + u(x,O)) $(x) = 0 

for both positive and negative A. For h 0 ( A  = k2),  the boundary conditions 

I- $(%) N exp { -ikx} + b(k )  exp {ikx} (x + m), 
$(x) - a(k)exp{-ikx] (x-+-m). 

for $(x) are 

One can show that lbI2 = 1, from which it follows that 

Ib(k)l < 1 if k * 0. (11) 

For h < 0, (9) has a bounded solution only for a discrete set of eigenvalues 
(A,  = - K t ) .  If u(z, 0 )  satisfies (4), the number N of such eigenvalues is finite. 
The corresponding eigenfunctions $ n ( ~ )  can each be normalized such that, 

After normalizing each eigenfunction $n(x), find its asymptotic behaviour as 
x + + o o :  

$n(x)  N cnex~{-Knx}* (12) 

(ii) Construct the function B(r, t )  and a(k, t ) :  

t )  = a(k, 01, 
N 

B(r, t )  = - ' Srn b(E)exp{8ik3t+ikr}dk+ C ciexp{8Kit-Knr}. (13) 

The function B now contains all the information given by u(x,  0) .  As one might 
expect, the precise determination of B is rather tedious unless u(x, 0 )  is quite 
simple. In what follows, we shall find it convenient to determine u(x, t )  in terms 
of B, rather than u(x,  0 ) ,  and to suppress time dependence: 

27r --a, n= 1 

where b"(k) = b(k)exp{8ik3t}, En = cnexp{4Kit). 

t enter this equation merely as parameters. Then 
(iii) Solve the Gelfand-Levitan equation (2) for K(x,  y; t) .  Note that both x and 

d 
ax u(x,  t)  = 2 - K(x ,  x; t ) .  

This is the remarkable result of Gardner et al. (1967). 
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2.2. The discrete spectrum 

The method of solution employed here is essentially that outlined by Gelfand & 
Levitan in their original work. The structure of the general solution is somewhat 
clearer if we first restrict our attention to cases in which B depends only on the 
discrete spectrum : 

(15) 
N 

n= 1 
BD(r, t) = 2 c i  exp (8K; t - K, r}.  

The integral equation (2) then has a degenerate kernel, and may be solved in 
closed form: 

N 

KD(x, y; t) = - En exp { - K,x} 
n , m = 1  

i3, Em exp { - (K, + K,) 
Kn+KYn 

EmexP { -K,Yh 

where S,, is the Kronecker delta. The solution of (1) may be written as 

(16) 
d2 

ax2 
u(x, t )  = 2-log (det (Pmn)), 

where Z, 6, exp { - (K, + K,) x} Pmn = ES,,+ 
Km + Kn 

, 

a result first obtained by Kay & Moses (1956). The discrete spectrum yields 
solitons, as noted by Gardner et al. If N = 1, u(x, t )  reduces to a solitary wave: 

u(x, t)  = 2K2,sech2{Kl(z-xl-4K2,t)}, (17) 

where Klxl = log (cl/(2K1)*). 

Thus, the eigenvalue ( -  K2,) determines the amplitude of the wave and the 
coefficient (c,) determines its phase. The case N = 2 provides a simple example of 
how solitons interact: 

L +A +fa+ (!55)Tf.fa)”] -l, (18) 
“f1fZ fz fl Kl+KZ 

where f, = 61exp{-Klx)/(2K,)~, fz = Z2exp{-K,x}/(2K,)~. 

As t + 5 co (for K, > K, > 0) ,  

u(x, t )  --f 2K; sech2 {K,(x - xe - 4K; t ) }  + 2K; sech2 {K,(x - x$ - 4Ki t ) } ,  

x$ = q + - l n  ~ + -  K, l K 1 + K 2 1  K,-K,’ x 2 -  

Each soliton retains its identity despite the interaction, experiencing at most 
a phase shift, a result previously obtained by Lax (1968). Equation (18) is plotted 
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FIGURE 2. Interaction of two solitons at succeeding times. K ,  = I, K ,  = 2. 

in figure 2 for typical values of the parameters. Finally, it should be noted from 
(1  8) that K'j = KE produces one, not two solitons. Hence, two solitons of identical 
size, travelling in the same direction, are impossible. This result was suggested 
by Benney & Luke (1964) and Byatt-Smith (1971). 

2.3. The continuous spectrum 
Next, consider a purely continuous spectrum : 

Equation ( 2 )  is still solvable, not because the kernel is degenerate, but because it 
is small. More precisely, if I]&] denotes the &-norm of the integral operator 
whose kernel is B,, then we shall see that ll&[] < 1 and that the homogeneous 
integral equation 

( 2 0 )  
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has only the trivial solution. Consider the real functions +(y) which vanish 
identically for y < x, and for which 

Using (19) and the definition of a Fourier transform, 

$(k) = lm $(Y,exP{-ilcy)dY, 
- m  

and reversing the order of integration, we obtain 

If $(k) =+ 0 for some k + 0, then 

m 

a ( k ) p c - k ) d k j  < k90 m a x { l ~ ( k ) l l ~ ~  2n --m I$(w-dk < 11$112, 

by Parseval's relation and (11). This method fails if $(k) = c8(k) ,  but no $(y) 
in the class considered can have such a transform. Thus we find both that (20) 
has only the trivial solution, and that 112?,11 < 1 on the class of functions con- 
sidered. It follows that the solution of ( 2 )  may be represented as a convergent 
Neumann series : 

x B,(z, + 2,; t )  B,(zZ + 9; t )  dz, d ~ z  + . . . , (21) 

where B, is given by (19). The solution of (l), corresponding to (21), is given by 

u ( x )  = - 2 [ -B(2x) :x + 2//zmB,B2(dz)2 + 2//j/zmB,B4(dz)4 + . . .] 

where time dependence has been suppressed. Alternatively, 

~ ( x )  = - 2 - - B ( 2 x ) + 4 B 2 ( 2 x ) + 4 ~ ( 2 x ) / m B 2 d z - / ~ ~ B , B ~ ( d z ) 2 ]  a + ... 
ax 5 

expresses the solution in powers of B. With sufficient perseverance, one can verify 
directly that (22) satisfies the differential equation (l), to any desired order (in 
powers of B) .  

The question of existence and uniqueness, for the purely continuous spectrum, 
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can be answered as follows. Faddeev (1958) showed that the requirements on 
u(z, 0) of continuity and (4) are equivalent to the following conditions: 

Ib(k)l < 1, if k + 0 and kreal, 
Ib(k)l = O(lk1-1) as k - t f 0 0 ,  (23) i a(k)  = i+O(lkl-1), Imk B 0,  Ikl + 00. 

For t > 0, 6(k) and a(k)  evolve as shown in (13). Substituting, we see that (23) 
is satisfied uniformly in time, so that u(2, t )  satisfies (4) for 0 6 t < 00. The infinite 
series (22), which converges (in the mean) for 0 6 t < 00, formally satisfies the 
differential equation and therefore represents the unique solution of (1) that 
evolves from the given initial condition. 

Consider next the asymptotic behaviour of the solution as t-ta. In  the 
linearized form of (l), without the term 6uux, the fundamental solution of the 
equation is an Airy function. It follows that any smooth, absolutely integrable 
initial condition evolves into a slowly varying wave train, oscillating about u = 0. 
Its group velocity is such that for any large t ,  wavenumber k dominates at the 
location given by 

and the maximum amplitude of the wave train decays as t-4. 
In  the nonlinear problem, all of this information is more elusive. We show in 

$ 4  that if the spectrum is purely continuous, the asymptotic solution is still 
a slowly varying wave train, whose group velocity is still described by (24). 
We next show that the amplitudes of individual wave crests decay as t-4, when 
no solitons exist. 

X l t  = -3k2, (24) 

Divide (1) by u and obtain 

Let X ( t )  denote the position of a local maximum of IuI (i.e. a wave crest or trough), 
and let 

H(t)  = In Iul at x = X ( t ) .  

aM iau  
dt u at' 

- = - -  Then 

because ux = 0 at a crest. Substituting into (25), 

dM 

X 

-ux,Iu is positive near the crests, and is a measure of the local curvature. 
Specifically, for a fixed, large t ,  u(x,  t )  has a Fourier transform: 

u(x,  t )  = Lf ~ ( k ,  t )  exp {i l~x)  dk. 
00 

2n 

If uxx(x, t )  is sufficiently well-behaved, 
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Evaluate both integrals by stationary phase at the same x and (large) t : 

u,,lu A L2, (28) 

where k is the dominant wavenumber at that particular (x, t). As shown in Q 4, 
the appropriate wavenumber is given by (24). Moreover, for fixed large t ,  the 
spatial variation of k2 is also given by (24). Substituting (24) and (28) in (27), 

dM 1 
at 3t’ 

Thus, if one follows an individual wave crest (at its phase speed), one observes 

- = -- 

u =  O(t-3) as t-too. (29) 

The most important decay rate is that of the envelope of all the waves, and 
this need not decay as t-3, since new crests can appear. However, since every 
crest within the envelope decays as t-#, it suggests that the decay rate is algebraic 
(i.e. t-9, p > 0) when no solitons exist. 

Berezin & Karpman (1964) obtained a similarity solution to (1) of the form 

u(x,t) = t - y (Z )  (a = .It*). (30) 

The same authors (1967) also found the initial conditions that yield (30): 

u(x, 0) = cS’(x). 

Thus, (30) evolves from initial data that violate (3) and lies beyond the range of 
the present analysis. Karpman (1967) also found a more general solution of (l) ,  
which suggests that t-% cannot be uniformly valid for a bounded solution. 

2.4. The complete spectrum 
The solution of (1) that evolves from a purely discrete or continuous spectrum 
consists of solitons or an oscillatory tail, respectively. When the spectrum is 
mixed, the solution contains both these parts, plus some interaction terms. The 
method of solution is a composite of the two methods used above. Schematically, 
(2) becomes 

where we again use (8) to denote an integral operator whose kernel is the func- 
tion B. Thus, 

(31) 

We must show that [I(.I+.f3D)-18cl[ < l[&ll < 1, to show that this equation has 
a unique solution. We need only show that 

(.I+k’,)K+&K = -(B,+ B )  c , 

( I  + ( I  3- 8’,)-1&) K = - ( I  +&)-I (B’, + B,). 

II (1 +&I, $11 2 I1 $11 for all 4, 
which is a straightforward computation: 
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where 

A Neumann series therefore exists for this problem as well. 
The general series solution for an arbitrary mixed spectrum is rather cumber- 

some, and is omitted. I n  any particular problem, the solution is obtained by 
following the procedure suggested by (31): first, invert ( I + j D )  as in $2.2,  then 
solve the new integral equation (31) by iteration as in $ 2.3. As t -+ 00, this solution 
of the general problem acquires a rather simple form. 

As an example, the case N = 1 displays the interaction between a soliton and 
the oscillatory tail. Retaining the first four orders of iteration and suppressing 
time dependence, we find 

Notice that the entire effect of the interaction between the soliton and the tail 
is to alter c"!, which (as t -+ 00) affects the phase of the soliton ; K,, which represents 
the oscillatory tail as t 3 co, evolves as if no soliton were present. 

The time-dependence of pn(t) requires that each P,(<) + 0 as t 3 00. If dbldk 
is bounded, one can show that 

and all the integrals in c i  and ci vanish as t -+ 00, for all x. Regardless of dbldlc, 
if one follows the soliton, /3?*(1;) has no points of stationary phase, and one still 
shows that the integrals vanish as t -+ co, withxlt = 4K;. I n  this case of one soliton, 
therefore, there is no asymptotic effect on the soliton from its interaction with 
the oscillatory tail, and vice versa. 

Benjamin (1971) demonstrated the neutral stability of the solitary wave. 
From (32) and the decay of the oscillatory tail, it follows that the solitary wave 
is asymptotically stable with respect to perturbations which affect only the 
continuous spectrum; i.e. the cumulative effect on the soliton from having inter- 
acted with the oscillatory tail vanishes as t -+ 00. Zakharov (1971) claimed that 
this asymptotically vanishing interaction is typical, and that, for N solitons, 
the continuous spectrum has no asymptotic effect on the solitons. To summarize: 



Korteweg-de Vries equation and water waves. Part 1 731 

Let u(x, t )  denote a solution of the Korteweg-de Vries equation (1) that evolves from 
an initial condition, satisfying (3) and (4)) and with exactly one soliton. As t --+a, the 
discrete spectrum of the initial condition affects only the soliton, and the continuous 
spectrum affects only the tail. I t  appears that this result can be extended to N solitons. 

3. The asymptotic solution 
We have seen that although the general solution of (1) consists of a h i t e  

number of solitons, an oscillatory tail and their interactions, only the solitons 
persist as t 3 co. The method of finding an approximate asymptotic solution is 
therefore much simpler than the method outlined above. In  5 3 we consider,some 
approximate methods for finding the number, and the respective amplitudes, of 
solitons that emerge from arbitrary initial data. All these methods depend on the 
close relation between the solitons and the negative eigenvalues of (9). 

We consider first the number of solitons N that emerge from an arbitrary 
initial disturbance u(x,  0). Zabusky (1968) claimed that 

[- u(x,  0 )  ax > 0 
J -a 

implies N 3 1. An upper bound on N is given by the following extension of the 
inequality of Bargmann (1952) : 

where 

The inequality is trivially satisfied if N 6 1, so we need consider only N > 1. 
Replace u(x ,  0) in (9) by q(x), and let N' denote the number of discrete eigen- 
values for q(x) .  Then N' 3 N .  Let $(x )  satisfy 

$"(XI + q ( 4  $(XI = 0. (33) 
$(x) can be chosen to have ( N ' +  1) zeros at finite values of x. Let a, /3 be two 
successive zeros such that x = O$(a,P). If N' 2 2, such a set of zeros exists, 
$'(a) + 0, and we may define 

~ ( x )  satisfies (33)) 
x (4  = 4(.,/$'(4. 

x(a) = x(p) = 0; x'(a) = 1, x ( x )  3 0 (a  6 x < p). (34a-c) 

Hence, 
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FIGURE 3 

~ ( x )  has ( N ’ -  1) such intervals, excluding the (possible) open interval con- 
taining zero. Summing (36) over these (”- 1) intervals, 

1 -m 1 XI p( x) dx 2 1: I XI q(x) dx 2 N’ - 1 2 N - 1, 
--m i=l 

i*i. 

from which (5) follows. Bargmann obtained the strict inequality. If we relax 
the requirement (3), then (6) cannot be so strengthened. For, if u(x,  0) = Q6(x), 
then there exists one eigenvalue if Q > 0, and equality is attained in (6). 

If q(x) in (6) is bounded and has compact support, as it does in many laboratory 
experiments, bounds more restrictive than (6) may exist. Considering figure 1, 
let N ,  N,, and N2 denote the number of discrete eigenvalues when u(x,  0), ql(x), 
and p2(x) are each substituted into (9). Nl 2 N 2 N.. It is a standard exercise in 
quantum mechanics textbooks (see Schiff 1949, p. 38) to show that 

If 2Qt 6 tan(&Qt), < Nz < - + l .  4 Qt 
Q2-Q3 7T 7T 

(39) 

Combining these results yields (5). 
The amplitude of each of these N waves is 2)A , ( ,  where A, is the nth negative 

eigenvalue of u(x,O). The simplest bounds on these amplitudes come directly 
from (9): o <  -h,6uo, 

where uo = max (u(x,  O)> ,  for any proper eigenvalue corresponding to u(x,  0). Let 
A, denote the most negative eigenvalue; then ]All + uo as N -+ co. 

Let [ u(x,  0)  dx > 0, 
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and let u,E2 < 1 where I is a typical scale length. Then only one soliton emerges, 
and Landau & LiEshitz (1965, p. 156) have shown that 

(A,( *: [Im u(x,O)dx . 
- m  l2  

Their work also confirms Zabusky's claim that at  least one soliton exists for 

m [ u(x,O)dx > 0,  
J --m 

in the case of small initial disturbances. 
These bounds are simple to apply, but may not be sufficiently precise in a 

given situation. More accurate information is found by actually calculating the 
eigenvalues of (9) with the Rayleigh-Ritz procedure. The largest negative eigen- 
value is 

{(dlCr/d42 - u(x,  0) lCr-"(.,> dx 
A, = min (7)  

@W y lCrr2(x)dx 
--m 

The other negative eigenvalues may also be found by this procedure, whose 
details are omitted. The number of solitons is then found simply by counting 
the eigenvalues. The asymptotic amplitude of the nth solition is 21Anl. 

Observe that, if u(x,  0) < 0, no negative eigenvalues exist. Consequently, 
a sufficient condition for initial data to evolve purely into an oscillatory tail is 
u(x,O) < 0. 

4. The iterated solution 
An obvious approach to solving (1) is to try a regular perturbation expansion 

(40) 

directly in the differential equation. One seeks a solution of the form 

u(x, t )  = €U1(X, t )  + €2U2(X, t )  + . * .  . 

Collecting powers of 8, one obtains a hierarchy of equations: 

where Lu = ut + u,,,. 
Once initial conditions have been prescribed for each equation in (41), the 

functions u,(x,t) are well defined. The problem with this approach is that the 
expansion (40) may not converge. For example, it is known that such an expansion 
cannot converge to a solitary wave (cf. Stoker 1957, p. 344). In  4 we show that, 
in the absence of any solitary waves, initial conditions for (41) can be chosen in 
such a way that the perturbation expansion (40) is identical (term-by-term) 
with the Neumann series solution (22). I n  other words, the perturbation ex- 
pansion can be made to converge whenever no solitons exist. The identification 
of these two series is then exploited to  obtain information about the solution for 
large time. 
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let us denote this series by 
Suppose there are no solitons, so that (22) represents the solution of (I), and 

W 

u(x , t )  = XV,(x , t ) ,  (22 4 
n=l  

where V,(x, t )  consists of those terms in (22) in which b(k)  is multiplied n times, i.e 

a 
ax Tqx, t )  = - 2 - B(2x ,  t ) ,  I 

I V,(X, t )  = 4B2(2x, t ) ,  I 

&(x, t )  = 4B(2x, t )  B'(x + X ,  t )  dZ Jxrn i (22b)  

Choose the initial conditions for (41) so that the two expansions (40) and (22a)  
are identical for t = 0:  

Then it will be shown by induction that V,  satisfies the same differential equation 
as enun, so that the two series are identical for all time. 

The series (22a), which is like a power series in b(k) ,  satisfies the differential 
equation (l), regardless of the choice of b(k).  The 'powers' of b(k)  are linearly 
independent, so each 'power ' of b(k)  in (1) must vanish identically. Substituting 
(22a)  into ( I ) ,  one obtains an equation for each V,: 

e%,(x, 0) = Tgx, 0). (42) 

n- 1 

j=1 
LV, = 0, LV,'= - SV,(V,), = - 3( V:)$, . . . LK = - 3 C (FV,Tn-j)z. (43) 

(Using (19) and (22 b ) ,  these equations can be verified algebraically.) Equation (41) 
differs from (43) only in the right-hand sides. But the equation for V, is homo- 
geneous, as is the corresponding equation for ul. Hence, V, and eul are equal for 
t = 0, satisfy the same differential equation, and must be identical for all time. 
But then the right-hand sides of the equation for V, and e2u2 are identical, so V, 
and e2u2 must be identical. 

Assume now that 5 and eiuj  are identical for a l l j  6 n - 1. Then the right-hand 
sides of the equations for V,  and enun are identical. Hence V,  and emun are equal 
for t = 0, satisfy the same differential equation, and are identical for all time. It 
follows that the series (40) and (22) are identical, term-by-term. 

If solitons are present, (22) does not represent the solution of ( I ) ,  and the 
procedure breaks down. To summarize: when (3) and (4) are satisjed, the iterated 
solution (40) of the differential equation (1) can be made to converge if and only if no 
solitons exist. 

The correspondence between the two series has some interesting consequences. 
Every term in (40) satisfies a set of equations of the form 

f t + f x x x  = P(X, t )  f(X, 0 )  = 4(x), (44) 

where p and 4 are continuous and vanish as 1x1 -+ co. The solution of (44) is 
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where 

and Ai (2) is an Airy function. For large time, these integrals evolve into slowly 
varying wave trains, whose group velocity is given by 

X / t  = -3k2. (24) 

Hence, for large time, f(x, t )  is a slowly varying wave train in which the wave- 
number k dominates near the location defined by (24). But every term in the 
expansion (40) for u(x,  t )  can be written in this form. Thus, the group velocity 
of every component of u, and therefore u itself, is defined by (24). This information 
was used in $2.3 to determine the algebraic decay rate of the solution corre- 
sponding to the continuous spectrum. 
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